Semiparametric spatial effects kernel minimum squared error model for predicting housing sales prices
نویسندگان
چکیده
Housing sale price prediction has been extensively studied under semiparametric regression models. However, semiparametric kernel machines with spatial effect term have not been studied yet. This paper proposes semiparametric spatial effect kernel minimum squared error model (SSEKMSEM) and least squares support vector machine (SSELS-SVM) for estimating a hedonic price function and compares the price prediction performance with conventional parametric model and semiparametric generalized additive model (GAM). This study utilizes a large data set representing 5966 single-family residential home sales between July 2000 and August 2008 from Pitt County, North Carolina. Data from Geographic Information Systems (GIS) are incorporated to account for locational attributes of the houses. The results show that the SSEKMSEM and SSELS-SVM outperform the parametric counterparts and semiparametric GAM in both in-sample and out-of-sample price predictions, indicating that these kernel machines can be useful for measurement and prediction of housing sales prices.
منابع مشابه
A Regression Test of Semiparametric Index Model Specification
This paper presents a simple regression test of parametric and semiparametric index models against more general semiparametric and nonparametric alternative models. The test is based on the regression coefficient of the restricted model residuals on the fitted values of the more general model. A goodness-of-fit interpretation is given to the regression coefficient, and the test is based on the ...
متن کاملA Regression Test of Semiparametric Index Model Specifications
This paper presents a straightforward regression test of parametric and semiparametric index models against more general semiparametric and nonparametric alternative models. The test is based on the regression coefficient of the restricted model residuals on the fitted values of the more general model. A goodness-of-fit interpretation is shown for the regression coefficient, and the test is bas...
متن کاملAnalysis of Hierarchical Bayesian Models for Large Space Time Data of the Housing Prices in Tehran
Housing price data is correlated to their location in different neighborhoods and their correlation is type of spatial (location). The price of housing is varius in different months, so they also have a time correlation. Spatio-temporal models are used to analyze this type of the data. An important purpose of reviewing this type of the data is to fit a suitable model for the spatial-temporal an...
متن کاملMachine Learning Models for Housing Prices Forecasting using Registration Data
This article has been compiled to identify the best model of housing price forecasting using machine learning methods with maximum accuracy and minimum error. Five important machine learning algorithms are used to predict housing prices, including Nearest Neighbor Regression Algorithm (KNNR), Support Vector Regression Algorithm (SVR), Random Forest Regression Algorithm (RFR), Extreme Gradient B...
متن کاملUsing Machine Learning ARIMA to Predict the Price of Cryptocurrencies
The increasing volatility in pricing and growing potential for profit in digital currency have made predicting the price of cryptocurrency a very attractive research topic. Several studies have already been conducted using various machine-learning models to predict crypto currency prices. This study presented in this paper applied a classic Autoregressive Integrated Moving Average(ARIMA) model ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 124 شماره
صفحات -
تاریخ انتشار 2014